Centric relation–intercuspal position discrepancy and its relationship with temporomandibular disorders. A systematic review

Antonio Jiménez-Silva, Julio Tobar-Reyes, Sheilah Vivanco-Coke, Eduardo Pastén-Castro & Hernán Palomino-Montenegro

To link to this article: http://dx.doi.org/10.1080/00016357.2017.1340667

Published online: 22 Jun 2017.

Submit your article to this journal

View related articles

View Crossmark data
Centric relation–intercuspal position discrepancy and its relationship with temporomandibular disorders. A systematic review

Antonio Jiménez-Silva, Julio Tobar-Reyes, Sheilah Vivanco-Coke, Eduardo Pastén-Castro, and Hernán Palomino-Montenegro

The objective of this study is to assess the relationship between centric relation-intercuspal position discrepancy (CR-ICP discrepancy) and temporomandibular disorders (TMDs), by systematically reviewing the literature.

Materials and methods: A systematic research was performed between 1960 and 2016 based on electronic databases: PubMed, Cochrane Library, Medline, Embase, Scopus, EBSCOhost, BIREME, Lilacs and Scielo, including all languages. Analytical observational clinical studies were identified. Two independent authors selected the articles. PICO format was used to analyze the studies. The Newcastle-Ottawa Scale (NOS) was used to verify the quality of the evidence.

Results: Four hundred and sixty-seven potentially eligible articles were identified. Twenty studies were analyzed, being grouped according to intervention in studies in orthodontic patients (n = 3) and studies in subjects without intervention (n = 17). Quality of evidence was low, with an average score of 3.36 according to Newcastle-Ottawa Scale. In most studies, the presence of CR-ICP discrepancy is associated with the presence of muscle (pain) and joint disorders (noise, disc displacement, pain, crepitus, osteoarthritis and osteoarthrosis). However, the lack of consistency of the results reported reduces the validity of the studies making it impossible to draw any definite conclusions.

Conclusions: Because of the heterogeneity of the design and methodology and the low quality of the articles reviewed, it is not possible to establish an association between CR-ICP discrepancy and TMD. The consequence of CR-ICP discrepancy on the presence of TMD requires further research, well-defined and validated diagnostic criteria and rigorous scientific methodologies. Longitudinal studies are needed to identify CR-ICP discrepancy as a possible risk factor for the presence of TMD.

Introduction

The relationship among occlusion, condylar position and temporomandibular disorders (TMDs) has been part of an extensive discussion in dentistry [1]. There is a belief that the discrepancy between the centric relation (CR) and the intercuspal position (ICP) could predispose to the presence of TMDs [2].

In the past, some studies suggested that malocclusion and occlusal interferences were considered as the main factors for predisposition, initiation and perpetuation of TMDs [3–6]. In the 1990s, studies suggested that some occlusal and skeletal characteristics as anterior open bite, unilateral posterior crossbite, overjet greater than 6–7 mm, absence of five or more posterior teeth and CR to maximum intercuspation (MI) discrepancy greater than 2 mm could be considered occlusal risk factors for TMDs [7–9]. Currently, the evidence has shown no differences between subjects with or without malocclusion and presence of TMDs [10–12].

The concept of CR is controversial in dentistry and its definition has changed over the years. The academy of Prosthodontists defines CR as ‘The maxillomandibular relationship in which the condyles articulate with the thinnest avascular portion of their respective disks with the condyle in the anterior–superior position against the slopes of the articular eminence. This position is independent of teeth contact’ [13]. Dawson described CR as the most comfortable and stable position of the jaw, in which the joints can be subjected to load without causing discomfort [14]. Currently, there are about 26 definitions of CR. However, its definition needs to be oriented clinically to reduce confusion and controversy, so that an adequate definition could improve communication at all levels of dentistry [2,15]. Evidence shows that there is not one ideal position of the condyle in the fossa but a range of normal positions [8,16–19]. Celenza says that there could be several CR positions acceptable [20]. Serrano supports this statement by indicating that CR is not...
only a position, but a range of positions [21]. The MI position or ICP is defined as ‘The complete intercuspation of the opposing teeth independent of condylar position’ [13]. It is also known as centric occlusion (CO): position determined by the teeth, when the patient closes in a position of complete tooth intercuspidation [8,22–26].

CR-ICP discrepancy or centric slide is defined as ‘the movement of the mandible while in CR, from the initial occlusal contact into maximum intercuspation’ [13]. The neuromusculature places the jaw on the site with the highest number of occlusal contacts without taking into account the final position of the condyle [23,26,27]. Despite this, it is considered that the role of condylar displacement may be a risk factor in the presence of TMD [28]. The controversy would be given by the ideal relationship condyle–fossa when the teeth are in MI [23,27,29], as premature contacts would change the arc of mandibular closure, displacing the condyles to achieve the maxillo-mandibular relationship MI to avoid premature contact [30], which may result in condyle displacement, potentially causing alteration on TMJ structure due to friction, increased intra-articular pressure and muscle tension [31]. Some authors have shown that the presence of occlusal interferences causes an imbalance between the inferior lateral pterygoid muscles and elevator muscles, which triggers muscle hyperactivity leading to the development of TMDs [29,32–34]. Nevertheless, it is not clear how occlusal changes could affect the function of temporomandibular joint (TMJ) [24,35], but the lack of scientific evidence does not support the fact that the condylar position is related to the presence of TMD [36,37].

Orthodontists with gnathologic guidance recommend the use of articulators with study models mounted in CR, in order to establish a match in the treatment of CR-ICP [29]. Thus, they believe in a tolerance of the CR-ICP discrepancy of 1.5 mm in the horizontal (H) and vertical plane (V) and 0.5 mm in the transverse plane (T). Utt et al. [27] found an average of 2.0 mm (H and V) and 0.5 mm (T); and Crawford [30] 1.0 mm (H and V) and 0.5 mm (H).

While some studies would relate occlusal factors with the presence of TMD [38–40], the evidence is not conclusive, showing a high heterogeneity in the design, methodology and diagnostic methods. The aim of the study was to conduct a systematic review to determine if CR-ICP discrepancy is associated with TMDs.

Material and methods

To establish the relationship between CR-ICP discrepancy and presence of TMDs, an electronic search was conducted on 8 May 2016. The databases used were PubMed, Cochrane Library, EBSCOhost, Scopus, Embase, Medline, Bireme, Lilacs and Scielo.

Type of studies

Observational studies, analytical case–control or cohort.

Language of the studies

The search was conducted without limitation of language.

Type of participants

The studies selected for this systematic review included subjects older than 11 years from both genders.

Type of results

Primary outcomes: to determine the relationship between CR-ICP discrepancy and TMDs. **Secondary outcomes:** to determine type of temporomandibular pathology related to CR-ICP discrepancy. To determine the amount of centric discrepancy and TMD.

Data collection

For TMD

Data were collected from studies that showed diagnosis of TMD not limited to any method, with a clear reference to the concept and diagnosis of TMD: research diagnostic for TMDs (RDC/TMD), diagnostic criteria for TMDs (DC/TMD), evaluation according to AAOP guide, Helkimo index, imaging studies (cone beam computed tomography (CBCT) and magnetic resonance imaging (MRI) and other methods), surveys’ studies and/or clinical examination based on signs and symptoms with reference to TMD and others.

For CR-ICP discrepancy

Data collected from studies that determined the presence of CR-ICP discrepancy without limitation of methods: condylar position indicator (CPI), use of articulators with studies mounted models, T-scan, clinical methods, other digital methods and others.

For the identification and selection of the number of potentially eligible studies for this systematic review (N), a specific and individualized search strategy for each database was developed. A semantic field was determined for the term ‘CR-ICP discrepancy or centric slide’ and another semantic field related to the term ‘Temporomandibular Disorders’ (Supplementary material 1).

Database used

2. The Cochrane Library. Filters: Publication years: All years; Database: Trials.
3. Embase:Publication dates: to-2016
5. BIREME:Publication dates: to-2016
7. Scielo:Publication dates: to-2016
8. Scopus:Publication dates: 1960 to 2016/Source Type: Journals
9. EBSCOhost:Without limiting publication date

Study selection and data collection

In a first screening, the title and abstract of all potentially eligible articles were listed and evaluated by two
researchers independently (J. A. and T. J.). The titles of the selected articles were transferred to an Excel table. In a second stage, the full text of articles that potentially met eligibility criteria based on the first screening were assessed independently by the same two researchers (J. A. and T. J.) according to inclusion criteria (case–control or cohort studies, assessing CR-ICP discrepancy, establishing a relationship between the presence of CR-ICP discrepancy and TMD). When no agreement was found, the inclusion of the article within the sample was discussed with a third researcher (P. H.) acted as an arbiter. Articles that met inclusion criteria were included in the review for the final analysis. The reasons why some studies were excluded were recorded in an adjacent column and presented in the results (Table 1). The quality of assessment according to NOS scale [41] was performed by two independent reviewers (V. S. and P. E.).

Extracting data from the studies

The PICO criteria (Population, Intervention, Control groups and Outcome) was used to make the tables of analyzed articles. Population (sample size, distribution by gender, age range and standard deviation); intervention: without intervention (main variables to compare, related to the topic, statistical analysis, type of method used for the diagnosis of TMD and method for determining discrepancy between CR-ICP); comparison criteria or control: (presence of any control group) and outcomes (including the answer to the hypothesis, the presence or causal relationship between discrepancy CR-ICP and TMD).

Presentation of results and quality of evidence

The tables were developed with the summary of the main results of the studies analyzed. The quality of evidence was determined by the Newcastle Ottawa-Scale (NOS) [41], which measures the quality of the evidence for case–control and cohort studies, assigning a score ranging from 0 to 9 points. For case–control studies, there were three categories. (1) Selection (4 points), (2) comparability (2 points) and (3) exposure (3 points). To determine the quality of cohort studies, there were also three categories with a level of evidence ranging from 0 to 9 points. The categories were (1) selection (4 points), (2) comparability (2 points) and (3) outcome (3 points). The highest quality achieved is obtained by the items that reached a maximum score of 9.

Results

Four hundred and sixty-seven potentially eligible articles were identified in the first approach in the nine databases used (Supplementary material 1); however, 111 of these articles were excluded because they were duplicates. After reviewing the title and abstract of the remaining 356 studies, 330 articles were excluded due to their non-relevance. Of the 26 articles left, six were eliminated in the reading of the full text for not meeting the inclusion criteria for this systematic review (Table 1). Finally, 20 studies were analyzed. Figure 1 summarizes the results described.

Included studies

Twenty articles were analyzed in this systematic review. According to its design, all were case–control studies. The analysis tables were prepared according to the PICO criteria (Tables 2 and 3). The articles analyzed were summarized according to intervention in (a) CR-ICP discrepancy and TMD in orthodontics patients \((n = 3)\) and (b) CR-ICP discrepancy and TMD in patients without intervention \((n = 17)\).

Characteristics of participants

Regarding the gender, three studies included only women in their sample [49,52,60]. The age range in orthodontic patients’ studies was 11–29 years and, in the studies of patients without intervention, it was 13–65 years.

Quality assessment

None of the reviewed articles obtained the highest score based on Newcastle-Ottawa Scale. The range of scores was between 2 and 6 with an average of 3.36 points and a median of 3.13 (Tables 4 and 5).

Muscular disorders and CR-ICP discrepancy

One study established the relationship between muscle disorder (defined as myogenic disorder according to Visser et al.) and CR-ICP discrepancy in the transversal plane. The diagnosis of TMD was based on signs and symptoms and used a clinical method to determine CR-ICP discrepancy, obtaining 3.0 points according the NOS scale [61] (Tables 4 and 6).
Joint disorders and CR-ICP discrepancy

Five articles determined a significant association between CR-ICP discrepancy and joint disorder. Three studies concluded that antero-posterior, medial-lateral and asymmetric slides were associated with joint pathology [48,50,62]. The other two articles did not report details of CR-ICP discrepancy [52,53]. The range of scores of articles varied from 2 to 4 points, with a median of 3.0 points. One study used the RDC/TMD, but without establishing a clear diagnosis [53]; two studies used imaging methods for diagnosing disc displacement [52] (MRI) and osteoarthritis [48] (CBCT); Sigaroudi et al. did not specify the method for diagnosing a click in TMJ [50] and Pullinger et al. based their results on the study of signs and symptoms for diagnosing joint click [62]. The methods used to determine CR-ICP discrepancy in these studies were T-scan III [53], clinical [52] mounting articulator [50,62] and three-dimensional TRIMET device [48].

Muscular and joint disorders and CR-ICP discrepancy

Half of the analyzed studies suggested a positive relationship between the presence of CR-ICP discrepancy and muscle and joint disorders collectively. The score range of studies was between 2 and 6 points with a median of 3.0 according to NOS scale. Diseases found were muscle pain, disc displacement, arthralgia, joint noise, crepitus, osteoarthritis and osteoarthrosis. Only two articles specified the plane in which the discrepancy occurs (antero-posterior, vertical and horizontal) related to the presence of TMD [58,64]. According to the diagnostic method, two studies used the RDC/TMD, two studies the Helkimo index, two studies were based on the presence of signs and symptoms and one article did not specify any method. The methods used to determine CR-ICP discrepancy were clinical [51,53], mounting articulator [30,58,59], T-scan II [31] and Mandibular Kinesiograph [64]. The findings are summarized in Table 6.

Discussion

This systematic review aimed to determine the relationship between CR-ICP discrepancy and presence of TMDs. To that end, 20 analytical observational studies were selected and analyzed. The analysis of articles comprised studies of patients with and without orthodontic treatment. Two studies in
Table 2. Summary of articles relating the discrepancy between CR-ICP with TMD in subjects with orthodontic treatment ($n=3$).

<table>
<thead>
<tr>
<th>First author (year)</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison (control group)</th>
<th>Outcome</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamada (2003) [48]</td>
<td>40 Subjects. 10M, 30F.</td>
<td>TMD diagnostic: CT for TMJ pathology, pain questionnaire, difficulty opening. Clinical examination at the beginning of orthodontic treatment Centric slide: TRIMET device, tridimensional analysis. IP to RCP analysis. Mann–Whitney U-test analysis and Kruskal–Wallis BBC group (bilateral bone change) $n=15$; 4M; 11F; m.a. 20.1 years. UBC group (unilateral bone change): $n=10$; 2M; 8F. m.a. 22.6 years. NBC group (no bone change) $n=15$; 30 joints 4M, 11F; m.a. 21.2 years</td>
<td>There were significant differences in three dimensional length, anteroposterior and latero-medial with respect to the condylar slides IP-RCP between osteophyte, erosion, flattening and NBC group. There were significant differences in three dimensional, anteroposterior, supero-inferior latero-medial incisal and condylar slides IP-RCP due to the uni/bilateral bone change.</td>
<td>There were significant differences in three dimensional length, anteroposterior and latero-medial with respect to the condylar slides IP-RCP between osteophyte, erosion, flattening and NBC group. There were significant differences in three dimensional, anteroposterior, supero-inferior latero-medial incisal and condylar slides IP-RCP due to the uni/bilateral bone change.</td>
<td>IP-RCP slides might be related to the types of TMJ pathosis</td>
</tr>
<tr>
<td>Artun (1992) [49]</td>
<td>63 patients. All women. a.r.: 11–25 years</td>
<td>TMD diagnostic: clinical examination. Joint noises to palpation. TMJ sensitivity exam Condylar position: radiographic examination, TMJ tomography CR-ICP discrepancy: clinical examination. Sagittal and lateral slides between CR and CO. Students t test, Chi-square.</td>
<td>Group with extraction ($n=29$; 11–25 year; m.a.: 16.9 years, SD = 3.0) Group without extraction ($n=34$; 13.1–24.9 years; m.a.: 16.6 years, SD 2.6)</td>
<td>Mean sagittal slides CR-CO were 0.66 mm (SD 0.61) treated with extraction and 0.78 mm (SD 0.55) without extraction. The difference was not significant ($p<.05$)</td>
<td>It could not be determined that a posterior condylar position is a consequence or cause of disc slide. On the side of the CR-CO lateral slide a tendency to posterior condylar position was found.</td>
</tr>
<tr>
<td>Sigaroudi (1983) [50]</td>
<td>31 subjects. a.r.: 22–29 years. M:15 F:6</td>
<td>TMD diagnostic: clinical examination (Click in the TMJ) CR-ICP discrepancy: examination of the presence from centric relation to centric occlusion and its severity (greater or less than 1 mm)</td>
<td>Control group ($n=10$; M: 8; F: 2)</td>
<td>Sliding from centric relation to centric occlusion in 70% control group and 90% test group. Lateral deviation from centric relation to centric occlusion in 50% control group and 90% test group. Pterygoid lateral pain 62% test group. Temporal muscle pain 62% test group.</td>
<td>The most important etiological factors for the click in TMJ are bruxism, teeth clenching and sliding from centric relation to centric occlusion greater than 1 mm and lateral deviation.</td>
</tr>
</tbody>
</table>

a.r: age range; BBC: bilateral condylar change; CR: centric relation; CO: centric occlusal; CT: computed tomography; F: female; ICP: intercuspal position; IP: intercuspal position; M: male; m.a.: mean age; mm: millimetre; RCP: retruded contact position; SD: standard deviation; TMD: temporomandibular disorders; TMJ: temporomandibular joint; UBC: unilateral condylar bone change.
There are no statistically significant differences between CR and MI in the group of individuals without any symptom or sign of TMD.

Table 3. Summary of relating the discrepancy between CR-ICP with TMD in subjects without intervention (non-orthodontics patients) (*n* = 17).

<table>
<thead>
<tr>
<th>First author</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison (control group)</th>
<th>Outcome</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lila-krasniqi (2015) [28]</td>
<td>54 subjects. 19M: 35F. a.r. = 20–65 years.</td>
<td>TMD diagnostic: anamnesis-responsible to a Fonseca questionnaire CR-ICP discrepancy; clinical measurements analyzed with electronic system T-scan III Kolmogorov-Sminov test, Lillefors test and Shaprio-Wilks test</td>
<td>G1: subjects with fixed dentures (n = 17; 8M 9F. a.r. = 22–65 years old) G2: subjects with TMD (n = 14; 5M 9F. a.r. = 23–58 years old) GC: control group: healthy subjects (n = 23; 6M 17F. a.r. = 20–35 years old)</td>
<td>After measurement in the three groups it was not significant differences p > .05</td>
<td>There are no statistically significant differences between CR and MI in the group of individuals without any symptom or sign of TMD</td>
</tr>
<tr>
<td>Chisnoiu (2015) [51]</td>
<td>234 subjects. m.a = 23 ± 4.24 years F:124; M:89</td>
<td>TMD diagnostic: according to RDC/TMD (trained examiners) with additional procedures CR-ICP discrepancy: observing coincidences between CR and MI Chi-square test. Student’s t-test</td>
<td>Coincidence between CR-MI Slide between CR-MI</td>
<td>Subjects with centric slides show joint clicks (p = .05). The interferences between CR and MI may have a consequence, contractions of the temporal muscle (p = 0.4) lateral pterygoid muscle (p < .001), SCM (*p = 0.003) or mylohyoid (*p = 0.001)</td>
<td>Occlusal abnormalities may play a role in temporomandibular joint disorder development. They can induce contraction and pain in the orofacial muscles, but also temporo-mandibular joint pain</td>
</tr>
<tr>
<td>Lim (2014) [52]</td>
<td>47 subjects. F: 47</td>
<td>TMD diagnostic: signs and symptoms. MRI High-resolution to evaluate the TMJ CR-ICP discrepancy: clinical method, patients in the supine position, and the jaw was passively manipulated until the first tooth contact. Acrylic gnatological stabilizing splints used in patients with CR-MI discrepancy</td>
<td>Control group: small CR-MI discrepancies, less than 1.0 mm (n = 27; 25.9 years SD 7.2) Study group: large CR-MI discrepancy, greater than 2 mm (n = 20; 24.7 years, SD 6.5)</td>
<td>All patients with large CR-MI discrepancy had TMJ disk displacement</td>
<td>Patients with large CR-MI discrepancy had TMJ disk displacement</td>
</tr>
<tr>
<td>Haralur (2014) [53]</td>
<td>250 patients. a.r 15–35 years</td>
<td>TMD diagnostic: clinical history, RDC/TMD CR-ICP discrepancy: clinical method (joint paper, caliper) Pearson test and logical regression</td>
<td>Without control group</td>
<td>Analysis between TMD and RCP-ICP slide, showed value of ‘r’ of 0.217, p = .01. The influence RCP-ICP slide at the beginning of TMD (OR: 3.10.95% CI: 1.12–7.49, p = .018)</td>
<td>This study indicates that RCP-PC1 slide has a strong association with TMD</td>
</tr>
<tr>
<td>Manfredini (2014) [54]</td>
<td>442 TMD patients. 725 female; a.r. 32.2 ± 5.7 years. a.r.25–44 years</td>
<td>TMD diagnostic: according to the RDC/TMD by the same expert trained operator CR-ICP discrepancy: calculated in the three spatial axes after manual mandibular distractive centric test was used</td>
<td>TMJ clicking group (n = 253;70% female; mean age of 31.8 ± 6.7 years) No-TMJ clicking group (n = 189; 74% female; mean age of 33.9 ± 4.5 years)</td>
<td>Centric slide more than 2 mm found to have a strong influence on the aetiology of TMD (p = .008)</td>
<td>Centric slides more than 2 mm found to have a strong association with TMD</td>
</tr>
<tr>
<td>Haralur (2013) [55]</td>
<td>100 subjects. (a.r = 18–35)</td>
<td>TMD diagnostic: clinical interview and examination by single clinician CR-ICP discrepancy: evaluated both by conventional and digital methods (T-scan III) Chi-square statistical analysis y t-student.</td>
<td>Group I: (n = 50) patients with normal TMJ Group II: (n = 50) patients had a minimum of one positive sign or symptom of TMD</td>
<td>RCP-MI slide ≥ 2 mm was the only predictor for TMJ clicking The value of the OR for the presence of click in the TMJ was not reached to be clinically</td>
<td>No relationship was demonstrated between centric slide and temporomandibular disorders in this study. Centric slides were equally distributed between healthy control subjects and patients with selected TMD diagnoses</td>
</tr>
<tr>
<td>Zonnenberg (2013) [56]</td>
<td>110 subjects</td>
<td>TMD diagnostic: RDC/TMD CR-ICP discrepancy: occlusal analysis on articulator-mounted casts and clinical evaluation Occlusal parameters measurements before and after TMD treatment, subjects with Tanner splint</td>
<td>GC: healthy (n = 27) MYO: myofascial pain (n = 26) OA: osteoarthritis (n = 28) ID: disc displacement without reduction (n = 29)</td>
<td>Splint treatment did not influence the magnitude of the slide in the MYO and OA groups. Splint treatment increased the magnitude of the slide in the ID group. However, the increase in magnitude was not statistically significant (p = 0.053)</td>
<td>A statistically significant association was found between TMJ and occlusal factors. The extent to which these changes can actually be considered predisposing, triggering or perpetuating factors of this disease can not be exactly defined</td>
</tr>
<tr>
<td>Costa (2012) [57]</td>
<td>100 patients M24; F:76 a.r: 10–60 years</td>
<td>TMD diagnostic: questionnaire proposed by Fonseca et al. CR-ICP discrepancy: Intraoral clinical examination for evaluation of occlusal characteristics. For slide centric, the position of CR was obtained with the technique of manipulating the tip of the chin. Chi-square test analysis</td>
<td>G1: control group with no TMD symptoms (n = 50) G2: patients had TMD (n = 50)</td>
<td>Discrepancy between the positions of CR and MI, deviations greater than 2 mm were found in 32% of patients with TMD. Discrepancies from 0 to 2 mm are considered normal and in this study they were found in 82% of asymptomatic patients and in 68% of TMD</td>
<td>A statistically significant association was found between TMJ and occlusal factors. The extent to which these changes can actually be considered predisposing, triggering or perpetuating factors of this disease can not be exactly defined</td>
</tr>
<tr>
<td>First author</td>
<td>Population</td>
<td>Intervention</td>
<td>Comparison (control group)</td>
<td>Outcome</td>
<td>Conclusions</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Padala (2012)</td>
<td>40 subjects</td>
<td>TMD diagnostic: clinical examination and modified Helkimo index CR-ICP discrepancy; mounted casts in AD2 articulator with MDC for CPR Chi-square and t-test test.</td>
<td>TMD group (n = 20) (a.a = 24.5). Control group: without TMD (n = 20) (a.a = 23.4).</td>
<td>Mean horizontal (p = 0.04) and vertical (p = 0.001) condylar displacements were statistically significant between groups</td>
<td>Condylar displacements in horizontal and vertical directions were greater in the symptomatic group (with TMD) than in the asymptomatic group (control)</td>
</tr>
<tr>
<td>Wang (2012)</td>
<td>31 subjects</td>
<td>TMD diagnostic: clinical examination. Evaluation for TMJ sounds and pain, muscular pain and functionality of the mandible CR-ICP discrepancy: T-scan II. Performed by same operator Chi-square analysis</td>
<td>TMD group: presence of signs and symptoms of TMD Control group: without signs and symptoms of TMD</td>
<td>Premature contacts appeared in both groups but were more dominant in the TMD group. There was statistical significance between the groups (p < 0.019)</td>
<td>A significant association between occlusal stability and TMD was found. The possible aetiopathogenic role of occlusion in TMD should be further investigated</td>
</tr>
<tr>
<td>He (2010)</td>
<td>177 subjects</td>
<td>TMD diagnostic: signs and symptoms and RDC/TMD confirmation CR-ICP discrepancy: mounted diagnostic casts with CPI for condylar measurements Chi-square and Pearson’s correlation test were used.</td>
<td>Experimental group (n = 107; a.a: 24 years, SD: 4.5) Control group: no TMD (n = 70; a.a: 24.4; SD: 4.1)</td>
<td>Significant differences in CR-MI discrepancies were found between groups (p < 0.001). Correlation between CR-MI discrepancies and TMD was significant</td>
<td>There is correlation between centric slide and signs and symptoms of TMD. Severity of CR-MI discrepancy has positive correlation with the severity of TMD</td>
</tr>
<tr>
<td>Selaimen (2007)</td>
<td>102 subjects</td>
<td>TMD diagnostic: based on the standardized RDC/TMD CR-ICP discrepancy: with a digital caliper (Mitutoyo Digital Caliper, Tokyo, Japan) Chi-square, Fisher exact test and Mann–Whitney U-test</td>
<td>Control group: no-pain (n = 30) TMD group: primary diagnosis of myofascial pain, with or without limited opening, and arthralgia (n = 72)</td>
<td>CR-CO slide was not significant between groups Only 11.3% of TMD patients had a CR-CO slide greater than 2 mm versus none in the control group</td>
<td>CR-CO slide did not yield significant results between TMD and no-pain groups</td>
</tr>
<tr>
<td>Crawford (1999)</td>
<td>60 subjects</td>
<td>TMD diagnostic: questionnaire based on the Helkimo index and clinical examination CR-ICP discrepancy: mounted casts (Panadent articulator), condylar position measured with CPI Student’s t-test</td>
<td>Control group: untreated (n = 30) (a.a = 38.4)</td>
<td>CP1 values at anamnestic and clinical scores were smaller in the restored ideal group when compared with the untreated control (p < 0.001)</td>
<td>There is a relationship between condylar axis position determined by occlusion and signs and symptoms of TMD</td>
</tr>
<tr>
<td>Visser (1994)</td>
<td>121 subjects</td>
<td>TMD diagnostic: clinical examination CR-ICP discrepancy: lateral slide between RCP-ICP; clinically defined Chi-square and Kruskal–Wallis tests were performed</td>
<td>Control group: without CMD (n = 60, m.a: 21 years) CMD group: (n = 61, m.a: 29 years)</td>
<td>Prevalence of lateral slide was greater in the CMD group when compared to the control group (p < 0.01); the CMD group also showed larger RCP-ICP lateral slides (p < 0.05)</td>
<td>CMD group showed a greater RCP-ICP discrepancy than the control group</td>
</tr>
<tr>
<td>Pullinger (1988)</td>
<td>222 subjects</td>
<td>TMD diagnostic: signs and symptoms by questionnaire and clinical examination CR-ICP discrepancy: clinical examination and dental casts evaluation Chi-square test for statistical analysis</td>
<td>No control group</td>
<td>Among subjects with unilateral RCP contact, those with no clinically obvious RCP-ICP slide (p < 0.005) and those with asymmetric slides (p < 0.05) had more TMJ clicking than subjects with symmetric slides</td>
<td>Certain occlusomorphologic conditions may require less adaption in the TMJs. Results indicates that an ICP anterior to the RCP in association with bilateral occlusal stability may be protective</td>
</tr>
<tr>
<td>Bush (1985)</td>
<td>298 subjects</td>
<td>TMD diagnostic: muscular or joint tenderness to palpation CR-ICP discrepancy: introral and mounted casts (Whip-Mix) Three different examiners Statistical analysis using t-test.</td>
<td>Groups according to: Angle’s classification and presence/absence of tenderness Class I (n = 262) Class II (n = 21) Class III (n = 15)</td>
<td>Class I subjects without tenderness showed greater vertical (p = 0.05) and horizontal (p = 0.02) displacements (RCP-IP) than subjects with tenderness</td>
<td>The findings contradict the notion that the presence of a minor slide contributed to some marked clinical symptoms such as tenderness</td>
</tr>
<tr>
<td>Maruyama (1982)</td>
<td>30 subjects</td>
<td>CR-ICP discrepancy: relationships between CR-CO recorded with a mandibular kinesiograph Statistical analysis by Student’s t-test.</td>
<td>Control group Study group: subjects with TMD (n = 30)</td>
<td>Deviations in antero-posterior, left and linear directions showed significant differences between groups (p < 0.01)</td>
<td>Centric slide can be one of the causes of TMD; however, it is not the only cause</td>
</tr>
</tbody>
</table>

Notes:
- a.a.: age average; a.r.: age range; CMD: craniomandibular disorders; CPR: condylar position indicator; CPR: condyle position recording; CR-CO: centric relation-centric occlusion; CR-MI discrepancy: centric relation-maximum intercuspal occlusion discrepancy; F: female; ICP: intercuspal position; M: male; m.a.: mean age; mm: millimetre; MRI: magnetic resonance imaging; MSD: measured condyle deviation; OR: odds ratio; RCP-ICP slide: retruded contact position-intercuspal position slide; RDC/TMD: Research Diagnostic Criteria for Temporomandibular Disorders; SCM: sternocleidomastoid muscle; SD: standard deviation; TMD: temporomandibular disorders; TMJ: temporomandibular joint.
A. JIMÉNEZ-SILVA ET AL.

Table 4. Summary of articles studying the relationship between CR-ICP discrepancy and TMDs, CR-ICP discrepancy type, temporomandibular disorder diagnostic and quality of evidence according to Newcastle-Ottawa Scale (NOS).

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Orthodontics patient? (yes/no)</th>
<th>CR-ICP discrepancy type</th>
<th>Pathology (TMD)</th>
<th>NOS score</th>
</tr>
</thead>
<tbody>
<tr>
<td>He [59]</td>
<td>2010</td>
<td>No</td>
<td>No report</td>
<td>Muscular/joint (DD, arthralgia, osteoarthritis) and osteoarthritis</td>
<td>6</td>
</tr>
<tr>
<td>Wang [31]</td>
<td>2012</td>
<td>No</td>
<td>No report</td>
<td>Joint (crepitus, pain, click); muscular (pain)</td>
<td>5</td>
</tr>
<tr>
<td>Lim [52]</td>
<td>2014</td>
<td>No</td>
<td>No report</td>
<td>Disc displacement</td>
<td>4</td>
</tr>
<tr>
<td>Haralur [55]</td>
<td>2013</td>
<td>No</td>
<td>No report</td>
<td>Unclear diagnosis</td>
<td>4</td>
</tr>
<tr>
<td>Padala [58]</td>
<td>2012</td>
<td>No</td>
<td>Horizontal and vertical displacement.</td>
<td>Joint (noises, pain, lock); Muscular (unclear diagnosis)</td>
<td>4</td>
</tr>
<tr>
<td>Yamada [48]</td>
<td>2003</td>
<td>Yes</td>
<td>Antero-posterior/lateromedial</td>
<td>Osteoarthritis</td>
<td>4</td>
</tr>
<tr>
<td>Haralur [53]</td>
<td>2014</td>
<td>No</td>
<td>No report</td>
<td>Joint disorders (pain, clicking), muscle pain</td>
<td>3</td>
</tr>
<tr>
<td>Crawford [30]</td>
<td>1999</td>
<td>No</td>
<td>No report</td>
<td>Muscular pain/joint (pain, lock, noises)/jaw</td>
<td>3</td>
</tr>
<tr>
<td>Visser [61]</td>
<td>1994</td>
<td>No</td>
<td>Lateral slide</td>
<td>Muscular (myogenic disorder)</td>
<td>3</td>
</tr>
<tr>
<td>Chisnoiu [51]</td>
<td>2015</td>
<td>No</td>
<td>No report</td>
<td>Muscular (pain) and joint (click and pain)</td>
<td>2</td>
</tr>
<tr>
<td>Pullinger [62]</td>
<td>1988</td>
<td>No</td>
<td>Asymmetric slides</td>
<td>Joint (click)</td>
<td>2</td>
</tr>
<tr>
<td>Sigaroudi [50]</td>
<td>1983</td>
<td>Yes</td>
<td>Lateral slide</td>
<td>Joint (click)</td>
<td>2</td>
</tr>
<tr>
<td>Maruyama [64]</td>
<td>1982</td>
<td>No</td>
<td>Antero-posterior/left and linear directions</td>
<td>Muscular/pain/joint (pain, click)/altered jaw movement</td>
<td>2</td>
</tr>
</tbody>
</table>

Total 6 3 8 3

Others 0 0 0 1

Imagenologic (MRI, CBCT) 0 0 1 1

Signs and symptoms 2 1 3 0

Questionnaire 0 1 1 0

Helikumo index 2 0 0 0

RDC/TMD 2 1 3 1

Table 5. Quality of evidence according to NOS scale in studies with and without intervention.

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Quality of evidence (NOS scale)</th>
<th>Score range</th>
<th>Median score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthodontics patients</td>
<td>With TMD (n = 2)</td>
<td>2 – 4</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Without TMD (n = 1)</td>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td>Non-orthodontics patients</td>
<td>With TMD (n = 11)</td>
<td>2 – 6</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Without TMD (n = 6)</td>
<td>3 – 6</td>
<td>3.5</td>
</tr>
<tr>
<td>Average total score</td>
<td></td>
<td>3.13</td>
<td></td>
</tr>
</tbody>
</table>

NOS: Newcastle-Ottawa Scale; TMD: temporomandibular disorders.

Table 6. Summary of studies according to methodology for the diagnosis of TMD and CR-ICP discrepancy determination.

<table>
<thead>
<tr>
<th>Method for determining CR-ICP discrepancy</th>
<th>Articulator mounting, (n =)</th>
<th>T-scan, (n =)</th>
<th>Clinics, (n =)</th>
<th>Others, (n =)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDC/TMD</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Helikumo index</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Signs and symptoms</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Questionnaire</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Imagenologic (MRI, CBCT)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Others</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

From a methodological point of view, the scientific quality of most part of the studies analyzed was low, with a range of scores according to NOS scale between 2 and 6 points with a median of 3.13 points (range scale score between 0 and 9 points). The weakness of the studies was mainly characterized by the presence of bias in the conformation of study groups, blinding, calibration of examiners and problems in the selection of cases and controls. The poor quality of evidence and designs influenced the possibility to determine whether or not there is a relationship between the variables.

When using NOS instrument to determine the quality of evidence in case–control and cohort studies [41], recurring methodological flaws in item selection were observed, particularly in the representativeness of cases, selection of controls and their definition, which resulted in substantially lower scores in studies. Another weakness was the presence of diagnostic instruments with low sensitivity for the diagnosis of TMD, as well as for determining CR-ICP discrepancy and its magnitude, which added to a high heterogeneity of the methods used in this item, complicating the comparison between studies.

According to the design of the articles, 20 case–control studies were analyzed (n = 20), making it difficult to establish a cause and effect relationship between CR-ICP discrepancy and TMD. That is, the design of most of the studies conducted did not allow to establish which condition occurs first, CR-ICP discrepancy or TMD. To establish a cause–effect relationship, cohort or longitudinal studies with large and representative samples are needed, but not yet available.
The lack of scientific evidence regarding the use of the articulator [65], as well as the methods that determine the position of the condyles in the mandibular fossa, are factors to be considered in the sensitivity of the instruments used to determine CR-ICP discrepancy. Regarding the methods for determining the CR record, studies based on magnetic resonance imaging (MRI) indicate that the condyles would not be located where clinicians think [66]. There would be no anterior condylar position in CR when different methods for bite registration were compared, reflecting a lack of precision in the registration process to determine the position of the condyle in the fossa [1]. This was supported by Henriques et al., who concluded that there is no significant difference in the mandibular condyle–fossa relationship between CR and ICP in asymptomatic subjects [40]. The conceptual differences related to the position in CR, variation in reproducibility, contradictory findings in the literature, the small discrepancy between CR-ICP positions, lack of scientific evidence supporting that the condylar position could be related to TMD and the limitations of the articulator to reproduce the anatomy and function of the TMJ has prompted several authors to oppose to the use of CR [36,37,67].

CR-ICP discrepancy and TMDs

Thirteen studies determined a positive relationship between CR-ICP discrepancy and TMD, according to orthodontic subjects (n = 2) and subjects without intervention (n = 11). Regarding the diagnostic of temporomandibular pathology, almost half of the articles included in this systematic review found a positive association between CR-ICP discrepancy and joint and muscular disorders (n = 7), five studies with joint disorders and one article with muscle disorder.

According to the American Academy of Orofacial Pain (AAOP), TMD are defined as ‘a group of disorders involving the masticatory muscles, the temporomandibular joint (TMJ), and associated structures’ [68], with different aetiologies and associated risk factors. Although there are diagnostic methods to determine different diagnoses of TMD as the RDC/TMD [70] and DC/TMD which has increased the reproductions to determine different diagnoses of TMD as the RDC/TMD [69], current evidence shows that the jaw muscle pain would have an effect on the position of occlusal contacts. Mobilio et al. concluded that by inducing muscle pain using a hypertonic saline 5%, different occlusal contacts would appear, disappearing after resolution of pain, so that their amount would not change, while their position itself would, generating posterior occlusal contacts [75]. The explanation may be that the jaw and consequently the occlusal contacts change for the presence of pain. This would be grounded within the context of the adaptation model of pain [76], where the presence of pain changes motor function for adaptation–protection [77].

The majority of the studies show that most patients present a discrepancy between CR and ICP [78,79]. Evidence linking the amount of CR-ICP discrepancy and TMD shows that a discrepancy minor than 1.0 mm in the horizontal or vertical plane is considered normal and would not be considered as a risk factor for TMD [30]. Most of the analyzed studies that positively associated the presence of CR-ICP discrepancy and TMD did not clearly determine the amount in millimetres (mm) necessary for the presence of TMD. The studies that determined the amount in mm (n = 7) varied in a range of values greater than 1.0, 1.5 and 2.0 mm of discrepancy, which means a lack of agreement among the authors who maintain this relationship [50,52,53,55,58,59,61]. Similar findings were observed in relation to the report in the plane where CR-ICP discrepancy occurs; only six articles specified that if the CR-ICP discrepancy occurs in the horizontal, vertical, transversal plane or if it presents asymmetrically, it would cause TMD [48,50,58,61,62,64].

Limitations

While the search for the articles was conducted in nine electronic databases without limitation of language and year of publication, the amount of evidence available is limited and contradictory. In addition, most studies found only considered one risk factor for the presence of TMD (CR-ICP discrepancy and TMD) and did not evaluate other factors involved, such as bruxism [80,81], facial morphology [82] and posterior crossbite [83]. Another limitation of the articles analyzed in this systematic review was the heterogeneity of evidence in relation to the design and diagnostic methods for TMD and to determine CR-ICP discrepancy and its magnitude.

Regarding studies in subjects with orthodontic treatment, there was a great variability in both the treatment modalities, the determination of CR-ICP discrepancy and diagnosis of TMD. One study did not report the details of the orthodontic treatment [48], another evaluated the relationship between CR-ICP discrepancy and TMD in groups with and without extractions [49], and the last study included subjects with and without orthodontic treatment [50].
Agreements and disagreements with other reviews

Two of the reviews related the occlusal factors to TMDs. The studies agreed that occlusion would not play a major role in the aetiology of TMDs. Türp et al. review [84] of observational and experimental studies determined that when artificial interference is introduced, occlusal discomfort and masticatory problems would be generated. This would be explained by a decrease in the adaptive capacity. In addition, acute occlusal interventions differ from long-standing occlusal interferences that may have been present for years. De Boever et al. [6] analyzed the benefit of eliminating centric slide, concluding that a prophylactic occlusal adjustment is not justified for the prevention and treatment of TMDs. Therefore, they suggested to continue the research on the relationship between the occlusion and TMD using evidence-based study methods.

Discrepancies regarding this study are related to the design of the reviews found regarding the search strategies, inclusion and exclusion criteria, analysis of the included studies, determination of the quality of evidence according to the design of the selected studies (experimental and observational studies), and finally neither the diagnostic criteria of TMD nor the methods to determine the discrepancy between CR-ICP were evaluated.

In this systematic review, all the studies that investigated the relationship between CR-ICP discrepancy and TMDs were analyzed. This remains a controversial topic. According to some articles included in this study, the CR-ICP discrepancy would be one of the occlusal factors associated with the presence of TMDs. Conversely, other studies indicate that there is no significant association between CR-ICP discrepancy and TMDs. Therefore, caution should be taken when deciding to eliminate this discrepancy to prevent or to treat TMD.

It would be recommended to develop cohort studies to determine the cause and effect relationship and to use validated diagnostic instruments with adequate sensitivity to determine a correct diagnosis of the different subgroups of TMD.

Based on the findings, it was not possible to consistently determine the association between CR-ICP discrepancy and TMDs. Due to the high heterogeneity in study designs, the low quality of the evidence and the variability of diagnostic methodology for TMD and CR-ICP discrepancy, a meta-analysis was not feasible.

Conclusions

Establishing the causal relationship between CR-ICP discrepancy and TMD is one of the most controversial topics in the dental literature, and although there is evidence, it is limited and of low quality.

In relation to the findings in this systematic review, we can conclude that

- The available evidence does not support a relationship between CR-ICP discrepancy and TMDs.
- The amount of evidence is limited and the quality is low, so it is not possible to establish consistent conclusions on this topic.
- Due to the heterogeneity of the designs and methodologies of the studies analyzed, it is not possible to assert that the presence of CR-ICP discrepancy and its magnitude is related to the presence of TMDs.
- Cohort studies are required, with higher levels of evidence to determine a possible causal relationship between CR-ICP discrepancy and TMDs.

Acknowledgements

Authors thank Mr. Juan Fernandez de los Rios from the Language and Translation services of the Faculty of Dentistry, University of Chile, for kindly correcting the English spelling and grammar of this paper.

Disclosure statement

The authors report no conflicts of interest.

ORCID

Antonio Jiménez-Silva http://orcid.org/0000-0002-8871-765X
Julio Tobar-Reyes http://orcid.org/0000-0002-9919-8576
Sheilah Vivanco-Coke http://orcid.org/0000-0002-1368-3803
Eduardo Pastén-Castro http://orcid.org/0000-0002-5423-2718

References

